Hardy type inequalities for fractional and q-fractional integral operators

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some new Hardy-type inequalities for Riemann-Liouville fractional q-integral operator

*Correspondence: [email protected] 1Luleå University of Technology, Luleå, 971 87, Sweden 2Narvik University College, P.O. Box 385, Narvik, 8505, Norway Full list of author information is available at the end of the article Abstract We consider the q-analog of the Riemann-Liouville fractional q-integral operator of order n ∈ N. Some new Hardy-type inequalities for this operator are proved and dis...

متن کامل

Certain Inequalities Involving Generalized Erdélyi-Kober Fractional q-Integral Operators

In recent years, a remarkably large number of inequalities involving the fractional q-integral operators have been investigated in the literature by many authors. Here, we aim to present some new fractional integral inequalities involving generalized Erdélyi-Kober fractional q-integral operator due to Gaulué, whose special cases are shown to yield corresponding inequalities associated with Kobe...

متن کامل

Generalized Hermite-Hadamard type inequalities involving fractional integral operators

In this article, a new general integral identity involving generalized fractional integral operators is established. With the help of this identity new Hermite-Hadamard type inequalities are obtained for functions whose absolute values of derivatives are convex. As a consequence, the main results of this paper generalize the existing Hermite-Hadamard type inequalities involving the Riemann-Liou...

متن کامل

Hardy-lieb-thirring Inequalities for Fractional Schrödinger Operators

We show that the Lieb-Thirring inequalities on moments of negative eigenvalues of Schrödinger-like operators remain true, with possibly different constants, when the critical Hardy-weight C|x|−2 is subtracted from the Laplace operator. We do so by first establishing a Sobolev inequality for such operators. Similar results are true for fractional powers of the Laplacian and the Hardy-weight and,...

متن کامل

On weighted inequalities for certain fractional integral operators

and Dn denotes the derivative operator ∂/∂x1, . . . ,∂xn. The operators in (1.1) provide multidimensional generalizations to the well-known one-dimensional Riemann-Liouville andWeyl fractional integral operators defined in [5] (see also [1]). The paper [7] considers several formulas and interesting properties of (1.1). By invoking the Gauss hypergeometric function 2F1(α,β;γ;x), the following ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Inequalities & Applications

سال: 2013

ISSN: 1331-4343

DOI: 10.7153/mia-16-45