Hardy type inequalities for fractional and q-fractional integral operators
نویسندگان
چکیده
منابع مشابه
Some new Hardy-type inequalities for Riemann-Liouville fractional q-integral operator
*Correspondence: [email protected] 1Luleå University of Technology, Luleå, 971 87, Sweden 2Narvik University College, P.O. Box 385, Narvik, 8505, Norway Full list of author information is available at the end of the article Abstract We consider the q-analog of the Riemann-Liouville fractional q-integral operator of order n ∈ N. Some new Hardy-type inequalities for this operator are proved and dis...
متن کاملCertain Inequalities Involving Generalized Erdélyi-Kober Fractional q-Integral Operators
In recent years, a remarkably large number of inequalities involving the fractional q-integral operators have been investigated in the literature by many authors. Here, we aim to present some new fractional integral inequalities involving generalized Erdélyi-Kober fractional q-integral operator due to Gaulué, whose special cases are shown to yield corresponding inequalities associated with Kobe...
متن کاملGeneralized Hermite-Hadamard type inequalities involving fractional integral operators
In this article, a new general integral identity involving generalized fractional integral operators is established. With the help of this identity new Hermite-Hadamard type inequalities are obtained for functions whose absolute values of derivatives are convex. As a consequence, the main results of this paper generalize the existing Hermite-Hadamard type inequalities involving the Riemann-Liou...
متن کاملHardy-lieb-thirring Inequalities for Fractional Schrödinger Operators
We show that the Lieb-Thirring inequalities on moments of negative eigenvalues of Schrödinger-like operators remain true, with possibly different constants, when the critical Hardy-weight C|x|−2 is subtracted from the Laplace operator. We do so by first establishing a Sobolev inequality for such operators. Similar results are true for fractional powers of the Laplacian and the Hardy-weight and,...
متن کاملOn weighted inequalities for certain fractional integral operators
and Dn denotes the derivative operator ∂/∂x1, . . . ,∂xn. The operators in (1.1) provide multidimensional generalizations to the well-known one-dimensional Riemann-Liouville andWeyl fractional integral operators defined in [5] (see also [1]). The paper [7] considers several formulas and interesting properties of (1.1). By invoking the Gauss hypergeometric function 2F1(α,β;γ;x), the following ge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Inequalities & Applications
سال: 2013
ISSN: 1331-4343
DOI: 10.7153/mia-16-45